The distribution of branchial carbonic anhydrase and the effects of gill and erythrocyte carbonic anhydrase inhibition in the channel catfish Ictalurus punctatus.

نویسندگان

  • R P Henry
  • N J Smatresk
  • J N Cameron
چکیده

Carbonic anhydrase (CA) activity was assayed in lysed erythrocytes and in branchial cytoplasm, mitochondria and microsomes of the channel catfish, Ictalurus punctatus. Branchial CA activity was highest in the cytoplasmic fraction, but activity was very low in mitochondria and microsomes. Erythrocyte CA activity was over four-fold greater than that in the gills. Intact animals were injected with the CA inhibitors acetazolamide and benzolamide. Slow, intra-arterial injection of both inhibitors elicited transient side effects of apnoea, bradycardia and hypoxaemia. Acetazolamide and benzolamide induced a mixed but primarily respiratory acidosis. The onset and the time course of the acidosis were correlated with the inhibition of erythrocyte CA; acetazolamide acted faster because it is more freely diffusible than benzolamide. The acid-base disturbance in the blood reached its maximum after 2 h; compensation was delayed until 24 h, when CA inhibition began to disappear. We conclude from these results that there is very little, if any, membrane-associated CA in the gill, and that the branchial enzyme is not quantitatively important in directly converting plasma HCO3- to CO2 for excretion. Rather, CO2 excretion is accomplished via the traditional chloride shift, followed by intracellular dehydration of HCO3- by erythrocyte CA. These results also suggest that branchial cytoplasmic CA inhibition might impair ion transport processes that are used to compensate blood acid-base disturbances and thus delay compensation of the respiratory acidosis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

pH Dependence Study of the Kinetic Reaction of Bovine Carbonic Anhydrase with 2,2'-Dithiobispyridine in the Absence and Presence of Surfactants

The pH dependence study reveals that the Cys 206 sulphydryl group of bovine carbonicanhydrase in the native form is not exposed. During the reaction of 2,2'-dithiobispyridine (2-DTP) with the enzyme, there was no absorbance change recorded. In the presence ofsurfactants, the pH dependence profiles of the apparent second order rate constants, kapp, forthe reaction of 2-DTP with bovine carbonic a...

متن کامل

Study of Glycation Process of Human Carbonic Anhydrase II and Investigation of Effect of Fasting On Enzyme Activity by Using Spectroscopic Methods

Background: Glycation is the non-enzymatic reaction between the carbonyl groups in sugar and free amino groups in proteins. this reaction leads to changes in structure and functions of proteins. Advanced glycation end products (AGEs) is the final stage in this process, which is highly oxidizing and destructive nature, causing many diabetic complications. Methods: In the present investigation, ...

متن کامل

Gas contaminants capturing by gamma-carbonic anhydrase catalyst: A quantum chemical approach

In this paper, we used quantum chemical approach to shed light on the catalytic mechanism of γ-carbonic anhydrase (γ-CA) to convert carbon dioxide to bicarbonate ion. Density functional theory (DFT) using B3LYP and UB3LYP functional and three split-valance including 6-31G*, 6-311G** and 6-311++G** basis sets were used to calculate the details of electronic structure and electronic energy of act...

متن کامل

Quantitative Structure - Activity Relationships Study of Carbonic Anhydrase Inhibitors Using Logistic Regression Model

Binary Logistic Regression (BLR) has been developed as non-linear models to establish quantitative structure- activity relationships (QSAR) between structural descriptors and biochemical activity of carbonic anhydrase inhibitors. Using a training set consisted of 21 compounds with known ki values, the model was trained and tested to solve two-class problems as active or inactive on the basi...

متن کامل

Gas contaminants capturing by gamma-carbonic anhydrase catalyst: A quantum chemical approach

In this paper, we used quantum chemical approach to shed light on the catalytic mechanism of γ-carbonic anhydrase (γ-CA) to convert carbon dioxide to bicarbonate ion. Density functional theory (DFT) using B3LYP and UB3LYP functional and three split-valance including 6-31G*, 6-311G** and 6-311++G** basis sets were used to calculate the details of electronic structure and electronic energy of act...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 134  شماره 

صفحات  -

تاریخ انتشار 1988